Math 261

Spring 2023
Lecture 47

Feb 19-8:47 AM

$$
\left.\begin{array}{l}
\int_{0}^{14} x^{2} \sqrt{x+1} d x \quad \begin{array}{c}
u=\sqrt{x+1} \\
u^{2}=x+1 \rightarrow u^{2}-1=x
\end{array} \\
\int_{1}^{\sqrt{2}}\left(u^{2}-1\right)^{2} \cdot u \cdot 2 u d u \quad \begin{array}{c}
2 u d u=d x \\
x=0 \rightarrow u=1
\end{array} \\
=2 \int_{1}^{\sqrt{2}}\left(u^{4}-2 u^{2}+1\right) u^{2} d u \\
=2 \int_{1}^{\sqrt{2}}\left(u^{6}-2 u^{4}+u^{2}\right) d u=\sqrt{2}
\end{array}\right] \begin{aligned}
& \left.=2\left[\frac{u^{7}}{7}-\frac{2 u^{5}}{5}+\frac{u^{3}}{3}\right]\right]_{1}^{\sqrt{2}} \\
& =2\left[\left(\frac{(\sqrt{2})^{7}}{7}-\frac{2(\sqrt{2})^{5}}{5}+\frac{(\sqrt{2})^{3}}{3}\right)-\left(\frac{1}{7}-\frac{2}{5}+\frac{1}{3}\right)\right] \\
& =2\left[\frac{(\sqrt{2})^{6} \cdot \sqrt{2}}{7}-\frac{2(\sqrt{2})^{4} \sqrt{2}}{5}+\frac{(\sqrt{2})^{2} \sqrt{2}}{3}-\frac{1}{7}+\frac{2}{5}-\frac{1}{3}\right] \\
& =2\left[\frac{8 \sqrt{2}}{7}-\frac{8 \sqrt{2}}{5}+\frac{2 \sqrt{2}}{3}-\frac{1}{7}+\frac{2}{5}-\frac{1}{3}\right] \\
& =2\left[\frac{(16 \cdot 8 \sqrt{2}-21 \cdot 8 \sqrt{2}+35 \cdot 2 \sqrt{2}-15+21 \cdot 2-35}{105}\right] \\
& =2\left(\frac{(20 \sqrt{2}-168 \sqrt{2}+70 \sqrt{2}-15+42-35)}{105}\right] \\
& \left.\left.=2\left(\frac{22 \sqrt{2}-8}{105}\right)=\frac{44 \sqrt{2}-16}{105}\right]>0\right]
\end{aligned}
$$

May 10-8:48 AM

find the area below $f(x)=(x-2)^{2}$, above the x-axis from $x=0$ to $x=4$.

$$
\begin{aligned}
& f(x)=(x-2)^{2} \\
& \text { Parabola } \\
& \text { Vertex (} 2,0 \text {) } \\
& f(0)=4 \\
& \begin{array}{l}
f(0)=4
\end{array} \\
& A=2 \int_{0}^{2}(x-2)^{2} d x \\
& u=x-2 \\
& d u=d x \\
& x=0 \rightarrow u=-2 \\
& A=2 \int_{-2}^{0} u^{2} d u \\
& x=2 \rightarrow u=0 \\
& \left.=2 \cdot \frac{u^{3}}{3}\right]_{-2}^{0}=\frac{2}{3}\left[0^{3}-(-2)^{3}\right] \\
& =\frac{2}{3}(8)=\frac{16}{3}
\end{aligned}
$$

May 10-9:15 AM
find the area enclosed by $f(x)=4$ and $g(x)=x^{2}$ Parabola open up $v(0,0)$ Surrounded by Horizontal line

$$
A=2 \int_{0}^{2}\left(4-x^{2}\right) d x
$$

$$
\begin{aligned}
& \left.=2\left[4 x-\frac{x^{3}}{3}\right]\right]_{0}^{2} \\
& =2\left[\left(4 \cdot 2-\frac{2^{3}}{3}\right)-\left(4 \cdot 0-\frac{0^{3}}{3}\right)\right. \\
& =2\left[8-\frac{8}{3}\right]=2 \cdot \frac{16}{3}=\frac{32}{3}
\end{aligned}
$$

find the area shaded below

May 10-9:31 AM

Suppose $f(x)$ is cont and $\int_{0}^{9} f(x) d x=5$
Find $\int_{0}^{3} x f\left(x^{2}\right) d x$

$$
\begin{aligned}
& u=x^{2} \\
& d u=2 x d x
\end{aligned}
$$

$=\int_{0}^{9} f(u) \frac{d u}{2}=$

$$
x=0 \rightarrow u=0
$$

$=\frac{1}{2} \int_{0}^{9} f(u) d u$

$$
x=3 \rightarrow u=9
$$

$$
=\frac{1}{2} \cdot 5=\frac{5}{2}
$$

May 10-9:42 AM

